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Abstract. The nonlinear coupling between light beams and non-resonant ion density perturbations in
a plasma is considered, taking into account the relativistic particle mass increase and the light beam
ponderomotive force. A pair of equations comprising a nonlinear Schrédinger equation for light beams and
a driven (by the light beam pressure) ion-acoustic wave response is derived. It is shown that the stationary
solutions of our nonlinear equations can be represented in the form of a bright and dark/gray soliton for the
one-dimensional problem. We also present numerical results which exhibit that our bright soliton solutions
are stable exclusively for the values of the parameters compatible with our theory.

PACS. 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions (including
parametric effects, mode coupling, ponderomotive effects, etc.) — 52.40.Db Electromagnetic (nonlaser)
radiation interactions with plasma — 52.35.Sb Solitons; BGK modes

1 Introduction

Recently, investigations concerning the nonlinear dynam-
ics governed by a multi-dimensional cubic-quintic nonlin-
ear Schrodinger equation (NLSE) have received a great
deal of attention. In this context, both localized vortex
solitons and non-localized optical vortices have been stud-
ied [1]. The cubic-quintic (2 + 1)-dimensional NLSE has
been used to study the stability of spinning ring solitons [2]
and theoretical investigations to find solitary solutions for
the cubic-quintic (1+1)-dimensional NLSE have been car-
ried out. Dark solitary waves in the limit of small ampli-
tudes have been found, where the NLSE was reduced to
a Kortweg-de Vries equation (KdVE) [3]. Moreover, both
algebraic solitary wave solutions [4] and traveling-wave so-
lutions [5] have been found and criteria for the existence
and stability of soliton solutions have been established [6].
Additionally, a theory which connects envelope solitons of
a wide class of generalized NLSEs with solitons of a wide
class of generalized KAVE have been recently carried out
for arbitrary amplitudes [7]; in particular, the theory was
applied to find analytical bright, gray and dark envelope
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soliton solutions of the cubic-quintic NLSE and some other
types of nonlinearities [7-9].

It is well known that nonlinear interactions between
intense laser beams and a plasma are responsible for nu-
merous nonlinear phenomena including parametric insta-
bilities [10], density cavitation, self-focusing and filamen-
tation of light [11-13], as well as the generation of large
amplitude electric fields to be used to accelerate charged-
particle bunches [14]. Intense laser beams can cause den-
sity modifications through the ponderomotive force, en-
hance the electron mass due to relativistic effects and
produce electron Joule heating. Both relativistic electron-
mass variation and pump wave effects have been suitably
considered for describing the beam self-focusing [15]. Fur-
thermore, a Hamiltonian approach to describe the dynam-
ics of solitary waves in the Zakharov model equations has
been devoted [16]. The interplay between the pondero-
motive, relativistic and Joule heating non-linearities has
been examined [11] in the context of laser plasma experi-
ments and also in ionospheric modifications of the Earth’s
ionosphere by powerful radar beams.

In this paper, we investigate nonlinear interactions be-
tween circularly polarized light beams and non-resonant
density perturbations in a uniform unmagnetized plasma,
taking into account the combined effects of the light pres-
sure induced ion density fluctuations and increased elec-
tron mass. We neglect low-frequency (quasi-static) mag-
netic fields [17-20] that are induced by strong plasma
density and temperature inhomogeneities [17,19], inverse
Faraday effect [18], and photon spin [20]. Spontaneously
excited megagauss magnetic fields would not affect the
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light wave propagation as long as the light wave frequency
is much larger than the electron gyrofrequency. Under
suitable physical conditions for which our system can be
described by a (1 + 1)-dimensional cubic-quintic NLSE
for the complex electromagnetic field amplitude, we an-
alytically obtain bright, gray and dark envelope solitons.
Finally, a stability analysis has been carried out, which
shows that our bright soliton solutions are stable.

2 Basic equations

We consider the propagation of a large amplitude circu-
larly polarized electromagnetic wave with an electric field
E = E(x +iy) exp(—iwt + ik-R), where w is the wave fre-
quency and k is the wavevector. The light equation in the
presence of electron density perturbations in a plasma is
obtained from

4 1
VxB = —J + -O,E, (1)
c c
with
J = —e(ng +n1)ve, (2)
B = VxA, (3)
1
E= fzatA, (4)
and
O0ipe = —¢E, (5)

where B is the wave magnetic field, A is the vector
potential, ng and n; are the unperturbed and perturbed
electron number densities, v. is the particle quiver
velocity induced by the photons, p. = meve is the
momentum, m, = mg/(1 — v2/c?)'/? is the mass, my is
the rest electron mass, e is the magnitude of the electron
charge, and c is the speed of light in vacuum. The per-
turbation of the number density n; is reinforced by the
light ponderomotive force. The nonlinear high-frequency
current density —enjv, in equation (2) arises due to the
beating of the slow density perturbations and the electron
quiver velocity in the light wave vector potential. For our
purposes, we have

e A
moC e ’

(6)

Ve =

in view of equations (4, 5). Here we have denoted v, =

1+ e2A2/mict. The nonlinear term in -, arises due to

the electron mass increase in the light wave fields.
Combining equations (1, 2, 3) and (6) we obtain

A — *VPA+ w2 (1+N) ? =0, (7)
e
where w, = (47nge?/mg)'/? is the plasma frequency, N =
n1/no, and where we have introduced the Coulomb gauge
VA =0.
Supposing that A = A4(r,7)exp(ik-R — iwt) + com-
plex conjugate, where r and 7 represent slowly varying
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space and time coordinates, we obtain from equation (7)

2iw(0r + vy Vi)As + AVEA, + 22A,
wi(1+ N)A,

Ye =0, (8)

where v, = kc? /w is the group velocity of the light wave,
and |0;A| < wA has been invoked in view of the WKB
approximation. We have denoted 2% = w? — ¢2k2.

We now derive the equation for low-phase velocity (in
comparison with the electron thermal speed) density per-
turbations that are driven by the light wave ponderomo-
tive force. The governing equations are the inertialess elec-
tron momentum equation

0= eV — moc®Viye — T.Ven (ne/ng), (9)
the ion continuity equation

o-n; + Vr(nlul) =0, (10)

and

01, + (0;-Vy) C Vep— LoVun (ni/mg), (1)
i i'Ve)u; = ——V, 0 — —V,In (n; )

T " v m; m; /Mo

where ¢ is the electrostatic potential, u; is the fluid ve-
locity associated with the plasma slow motion, and T, (T;)
is the electron (ion) temperature. The second term in the
right-hand side of (9) represents the light pressure. Equa-
tions (9) to (11) form a closed system when the quasi-
neutrality n. = n; is invoked. The light ponderomotive
force acting on the ion fluid is insignificant. Equation (9)
shows that the electrons are pushed away from the region
of maximum light intensity, and reinforce a space charge
electric field (—=V¢) and the associated density fluctua-
tions. The light ponderomotive force is transmitted to ions
through the space charge electric field.

Adding equations (9, 11) and letting n.; = no + n1,
u; = up + u;; = u;;, we obtain for n; <K ng and
| (wi1-Ve) win| < |07 u41]

2

a‘ruil = *@CQVFP)%I - _Svrnla (12)
m; no

where for consistency we have assumed e2A2/mict < 1
and, consequently, introduced a small perturbation ~.; of
the electron relativistic factor ve (Ve &= 1 + 7.1, where
Ye1 = €2A2/2m2c) and Cs = [(T. + T;)/m4]/? is the
effective sound speed. Combining equation (12) with the
linearized version of equation (10), we obtain

92N — C2V2N = 20292, .

(3

(13)

In the small amplitude limit, viz. y. < 1, equation (8)
becomes

2iw(0r + vy Ve)As + EVEA, + (22 —wp) A,

— W2 [(N = %e1) = Nya] A = 0. (14)
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Equations (13, 14) are the desired equations for coher-
ent light beams that are coupled with non-resonant den-
sity perturbations in an electron-ion plasma. Note that, in
principle, the quantities (N — 7.1) and N+,1, involved in
equation (14), could be of the same order. In the follow-
ing, this physical circumstance will be considered and, to
this end, we seek possible stationary nonlinear solutions
of equations (13, 14) in the form of envelope solitons.

3 Envelope solitons

We introduce & = r — V7, where V is the velocity of
the nonlinear waves, and assume Ay = a(§) exp(—if27),
where {2y is a constant. Hence, we readily obtain from
equations (14) and (13)

2w [(—V +vy) Ve]a+ *Via+ (2° — wﬁ + 2wid) a
—wp [(N = 7e1) = NvyeaJa=0, (15)

and

(V-Ve)’N —C2 VIN = 222 Vi, (16)
m;

For the sake of simplicity, we consider here the one-

dimensional case for which can write (V-V¢)?N =

V29ZN. Consequently, equation (16) can be immediately

integrated, yielding

2
mocC
N =

S =Y a7)

Yel-

Accounting for the explicit expression of 7., choosing
V] = |v4| > C,, and combining equations (15, 17), we
easily obtain

1
SR+ N — [ | @] + P[] @ =0, (18)

where we have introduced the following dimensionless
quantities

n=cé&/wp,
_ea
V2mge?’
w? —2k? — wg + 2wy
2%2)
1

n=5k-1)

4

A2 =

)

and

1
5:”’7
with g = moc?/m;(V? — C?) ~ moc? /m; V2.

Note that, since p > 0, g2 is a negative quantity. Addi-
tionally, since N and 7.1 must be of the same order, from
equation (17) is evident that p is of the order of the unity
(u ~ 1), but slightly greater than 1. This circumstance

q2 = —
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is satisfied when we choose, consistently, a group veloc-
ity vg =V ~ (mo/mi)l/2 c. This justifies why we kept
both the nonlinear terms in equation (18); accordingly,
the terms ¢1|%|? and ¢2|&|* are of the same order. In par-
ticular, if p is exactly equal to 1 (i.e., we have exactly

V= (mo/mi)l/2 ¢), equation (18) becomes

1
582@ + N — | W' =0, (19)
which shows that a part of the relativistic mass variation
nonlinearity exactly cancelled out by the light ponderomo-
tive force driven supersonic electron density contribution.
If we put

P(n, 5) = ¥(n) exp (—iX’s) (20)
where s is a new dimensionless time-like variable, equa-
tion (18) can be cast as

i0sP + %agqi — [q|®)* + 2|®* ] 2 =0. (21)
Let us suppose that u is (slightly) larger than 1. In this
way ¢1 > 0, and equation (21) admits bright, gray and
dark envelope soliton-like solutions. In fact, from the re-
sults of recent investigations [7] that have found a wide
class of envelope soliton-like solutions of equation (21), one

can deduce, through equation (20), the following soliton-
like solution for ¥ ()

2€

W(n) = \/ﬂ[l + € sech (T]/A)] exp{iB |:Z + ﬁ

X arctan ((6 — 1z;1abn_}1€(277/2A))} + i¢0} . (22)

where ¢¢ is an arbitrary real constant, w = —3¢1/(8¢2) =
3(n—1)/(8u), the constants €, A and B are given, respec-
tively, by

2 2
e=4+./1— 32|q2LVO =4,/1— 64|:LL|‘/£) 5
3q3 3(p—1)
A- (2\/2 )
— 2 2
_ (o, fo - 312 VF
128 |,U'| 2

B =TpA,

3

_ 3 W
64 |(J2| 2

-1

)

provided that

2 _ 15(u — 1) Yo
27

18]
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and the real constant Vj satisfies the condition

3(p— 1)
[ —— < W<
64 |u|

3(p—1)2
64 |4

Accordingly, the definition of A? implies that

15(u — 1)
2 232 2 2
—ck® 4 2wl = 1+ ——+V;
w = kT + 2wl = w, ( + m +Vo )
which is a condition for the real constant (25. According
to the terminology and the results of references [7,8], we
can distinguish the following four cases. (a) 0 < € < 1
(Vo # 0): up-shifted bright soliton

u(n=0)=1u(l+e),

and lim u(n) =7

n—=+oo
which corresponds to a bright soliton of maximum
amplitude (1 + €)u and up-shifted by the quantity @. (b)
—1<e<0 (Vo #0): gray soliton
u(n=0)=1u(l—e),

and lim u(n) =7

n—=4oo
which is a dark soliton with minimum amplitude (1 — €)u
and reaching the asymptotic upper limit @. (¢) e = 1
(Vo = 0): upper-shifted bright soliton
u(n = 0) = 2u,

and lim wu(n) =71

n—=+oo
which corresponds to a bright soliton of maximum ampli-
tude 2u and wup-shifted by the maximum quantity . (d)
e =—1 (Vo = 0): standard dark soliton

un=0)=0, and lim u(n)=7

n—+oo

which is a dark soliton (zero minimum amplitude), reach-
ing the asymptotic upper limit .

Correspondingly, equation (17) gives the following
soliton-like solution for the density fluctuation

N@) = p @) = > (1 — 1) [1 + € sech (n/A)].

. (23)

On the other hand, according to references [7,8], equa-
tion (19) has the following bright envelope soliton-like
solution

@(n)[@]“mm[ NEaln] exp (i60) . (24)

where ¢y is an arbitrary real constant and Fy is a
negative real constant satisfying the condition \2 = E.
The latter implies the following condition for 2:
w? = 2k + 2wl + w2 (2|Eg| —1) = 0. Furthermore,
equation (17) implies that now the density fluctuation
corresponds to the following soliton-like solution

N(n)u@(n)ﬁ[@]msmh[ AEaln] . (25)

We now investigate the stability of plane wave solutions
of the one-dimensional equation (21). We allow g to
run in a wider interval of values with respect to the
one permitted in our physical problem; for the present
analysis we allow p to be also equal or less than 1
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(including negative values). We first note that if we set
g2 = 0, the corresponding equation is the well known
defocusing cubic Schrédinger equation which is known
to be stable. It is, therefore, interesting to study if
the ¢2|®|* term can modify the instability. The analy-
sis is performed by seeking a solution corresponding to
a uniform wave train perturbed by small disturbances, viz.

® = [Dg + p(s,n)] expi{[—q1|Po|* — q2|Po[*]s + 0(s,m)},
(26)

where p and 6 are considered to be small amplitude and
small phase perturbations. We then substitute the per-
turbed solution in equation (21) and retain only the linear
terms in p and 6. Since the resulting equation is linear
we can now assume a solution for the perturbation of the
form p = ppexpilKn — 2s] and 0 = HyexpilKn — 2s].
The resulting dispersion relation is

K2

22 = - (K? +4q1|Po|? + 8g2|Po|*) (27)
which shows that the wave train is unstable if the
perturbation K lies in the range of 0 < K <
2|Po|l/—aq1 — 2¢q2|Po|?. According to the definition of
g1 and ¢, instability will occur only if p > 1/(1 —
2|@9|?). The maximum instability occurs at K =
|Pol/—2q1 — 4ga|Po|*.

4 Numerical simulations

In this section, we analyze numerically both the influence
of the quintic nonlinearity on the modulational instabil-
ity and on the stability of a class of soliton-like solutions
obtained in the previous sections. Equation (21) is solved
numerically using a standard pseudo-spectral code with a
second order Runge-Kutta method for advancing in time.
We recall that the use of pseudo-spectral code implies the
assumption of periodic boundary conditions.

4.1 Modulational instability

Accordingly to the linear stability analysis performed
previously, initial conditions for our numerical simulations
are given as follows:

®(x,0) = Pp[l + € cos(Lx)], (28)
where ¢ is the amplitude of the small perturbation and
is taken as 102 the amplitude of the unperturbed wave.
Without loss of generality in our simulations we have cho-
sen P9 = 1 and L = 1 and have considered only one period
of the perturbation. We have performed several numerical
simulations with different values of the parameter p. For
@y = 1 the theory predicts stability for 4 < —1. In Fig-
ure 1 we show the evolution of a plane wave in the n — s
plane for y = —1.5. The initial wave field persists for all
times. For ¢ > 1 modulational instability should occur.
In Figure 2 we show the case of p = —0.2; analogously
with the standard modulational instability we observe a
Fermi-Pasta-Ulam recurrence: periodically the perturba-
tion grows, the wave reaches a maximum amplitude and
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_— =55
- 50

Fig. 1. Evolution of a plane wave in the n-s plane for p = —1.5.
The initial wave field persists for all times.

r2s

Fig. 2. Evolution of a plane wave in the n-s plane for p = —0.2;
the wave reaches a maximum amplitude and then goes back to
the initial condition.

then goes back to the initial condition. For u > 0 a com-
pletely different physics takes place: in Figure 3, obtained
for u = 0.5, we do not observe anymore a recurrence and
as time passes the wave amplitude increases while the its
width decreases. This phenomenon corresponds to the ini-
tial stage of a wave collapse (see [21]).

4.2 Stability of soliton-like solutions

It is well know that the cubic NLS equations (g2 = 0)
posses solitons solutions if ¢; is larger than zero. We
here investigate numerically if the soliton-like solutions
described previously are stable or not. In order to do that
we simply consider a soliton-like solution at time s = 0 and
we let evolve numerically equation (21). For simplicity, we
restrict our analysis to a sub class of solutions which cor-
responds to the case of bright solitons with V5 = 0. We
have performed many different numerical simulations with

L H o e SR
Lot vl 1
o

L]
e o
L

e
74 rl_'r—7_,_,

143 130 n7
104
5 91

-.’7-7_7_7— —_
i r/‘v—;-,_,_r

78 65 52 39 % 13 4

Fig. 3. Evolution of a plane wave in the 7-s plane for ;= 0.5.
No recurrence is observed anymore and as time passes the wave
amplitude increases while its width decreses.

— 0.50

" i

""' - 043

- 0.36

Fig. 4. Evolution of the soliton in the 7-s plane for p = 1.1
which corresponds to a stable solution.

different values of the parameter . The major result ob-
tained is the following: if u > 1 solutions are stable and
for 0 < p < 1 are unstable. This is due to the fact that for
1 > 1 the coefficients in front of the cubic and quintic non-
linearities, respectively ¢; and g2, have opposite sign and,
therefore, there is a sort of balance between nonlinearities
that stabilize the soliton-like solution. This is not the case
for 0 < p < 1: both nonlinearities have the same sign and
the dispersion is not strong enough to balance them. In
Figures 4 and 5 we give numerical evidence of the results
presented for p = 1.1 and for p = 0.9 respectively. The
first case, Figure 4, corresponds to a stable solutions (the
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— p— — 050

= 0.43

N - 0.36

- 029

Fig. 5. Evolution of the soliton in the n-s plane for y = 0.9
which corresponds to an unstable solution.

wave profile does not change as time s passes). The second
case, Figure 5, is the unstable case: a clear increase in the
wave amplitude is noted.

According to the above stability analysis, we conclude
that our soliton solutions are stable in the range where p >
1 only; this inequality, according to Section 3, is consistent
with the conditions for their existence in our problem.

5 Conclusions

To summarize, we have considered the nonlinear interac-
tion between intense light beams and non-resonant density
perturbations, taking into account the relativistic mass
increase of the electrons as well as the light beam pon-
deromotive force that reinforces the density perturbations
in an electron-ion plasma. The nonlinear coupling is gov-
erned by a pair of equations which, in one-dimension ad-
mit stationary solutions in the form of a planar bright and
dark/gray envelope solitons. The condition for the stabil-
ity of bright soliton-like solutions has been found numer-
ically and it has shown that they are stable just for the
range of parameters required in our problem.
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The numerical stability analysis for the family of dark
and gray solitons, which is somewhat more complex, is
under consideration.
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